Alternative Geometric Arrangements of the Nozzle Outlet Orifice for Liquid Micro-Jet Focusing in Gas Dynamic Virtual Nozzles

Author:

Šarler BožidarORCID,Zahoor Rizwan,Bajt SašaORCID

Abstract

Liquid micro-jets are crucial for sample delivery of protein crystals and other macromolecular samples in serial femtosecond crystallography. When combined with MHz repetition rate sources, such as the European X-ray free-electron laser (EuXFEL) facility, it is important that the diffraction patterns are collected before the samples are damaged. This requires extremely thin and very fast jets. In this paper we first explore numerically the influence of different nozzle orifice designs on jet parameters and finally compare our simulations with the experimental data obtained for one particular design. A gas dynamic virtual nozzle (GDVN) model, based on a mixture formulation of Newtonian, compressible, two-phase flow, is numerically solved with the finite volume method and volume of fluid approach to deal with the moving boundary between the gas and liquid phases. The goal is to maximize the jet velocity and its length while minimizing the jet thickness. The design studies incorporate differently shaped nozzle orifices, including an elongated orifice with a constant diameter and an orifice with a diverging angle. These are extensions of the nozzle geometry we investigated in our previous studies. Based on these simulations it is concluded that the extension of the constant diameter channel makes a negligible contribution to the jet’s length and its velocity. A change in the angle of the nozzle outlet orifice, however, has a significant effect on jet parameters. We find these kinds of simulation extremely useful for testing and optimizing novel nozzle designs.

Funder

Centre of Free Electron Laser

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of non-Newtonian gas-focused micro-jets in chocked gas flow regime;Journal of Physics: Conference Series;2024-05-01

2. Numerical modelling and experimental validation of dripping, jetting and whipping modes of gas dynamic virtual nozzle;International Journal of Numerical Methods for Heat & Fluid Flow;2024-02-05

3. A numerical study of gas focused non-Newtonian micro-jets;International Journal of Multiphase Flow;2024-01

4. Gaseous Flow Focusing II;Fluid Mechanics and Its Applications;2024

5. FLUID DYNAMICS OF DOUBLE FLOW-FOCUSING NOZZLES: A NUMERICAL STUDY;Proceeding of 9th Thermal and Fluids Engineering Conference (TFEC);2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3