Abstract
Infection with the novel severe acute respiratory coronavirus-2 (SARS-CoV2) results in COVID-19, a disease primarily affecting the respiratory system to provoke a spectrum of clinical manifestations, the most severe being acute respiratory distress syndrome (ARDS). A significant proportion of COVID-19 patients also develop various cardiac complications, among which dysfunction of the right ventricle (RV) appears particularly common, especially in severe forms of the disease, and which is associated with a dismal prognosis. Echocardiographic studies indeed reveal right ventricular dysfunction in up to 40% of patients, a proportion even greater when the RV is explored with strain imaging echocardiography. The pathophysiological mechanisms of RV dysfunction in COVID-19 include processes increasing the pulmonary vascular hydraulic load and others reducing RV contractility, which precipitate the acute uncoupling of the RV with the pulmonary circulation. Understanding these mechanisms provides the fundamental basis for the adequate therapeutic management of RV dysfunction, which incorporates protective mechanical ventilation, the prevention and treatment of pulmonary vasoconstriction and thrombotic complications, as well as the appropriate management of RV preload and contractility. This comprehensive review provides a detailed update of the evidence of RV dysfunction in COVID-19, its pathophysiological mechanisms, and its therapy.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献