A Methodology for Industrial Water Footprint Assessment Using Energy-Water-Carbon Nexus

Author:

Trubetskaya AnnaORCID,Horan William,Conheady Paul,Stockil Ken,Moore Sean

Abstract

Recent national government policy in Ireland proposes a radical transformation of the energy sector and a large reduction in CO2 emissions by 2050. Water and energy form the water–energy nexus, with water being an essential component in energy production. However, the connection between the production of energy and water is rarely made. In particular, the end-user processes are generally excluded because they occur outside the water industry. The present study includes two simple approaches for industrial sites to calculate their carbon footprint in the water sector. The assessment of the milk powder manufacturing using both approaches indicates that the combined emission factor of the water supply and treatment is approximately 1.28 kg CO2 m−3 of water. The dairy production among steel, textile, and paper industries appears to be the most carbon-emitting industry. However, the results show that the carbon intensity of the water supply and treatment can be minimized by the integration of renewable energy sources for the onsite heat/steam and electricity generation. The uniqueness of our approaches compared to calculations illustrated by the ecoinvent and other governmental databases is its simplicity and a focus on the main energy consuming manufacturing steps in the entire industrial process. We believe that the management of water and energy resources will be more efficient when “active water citizens” raise environmental awareness through promoting measures regarding data monitoring and collection, observed leaks and damages, dissimilation and exchange of information on sustainable water stewardship to public and various industrial stakeholders.

Funder

Environmental Protection Agency

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference90 articles.

1. Thirst for energy

2. Future Water: The Government’s Water Strategy for England,2008

3. The carbon footprint of water;Griffiths-Sattenspiel;River Netw. Portland,2009

4. Methodology for Analysis of the Energy Intensity of California’s Water Systems, and an Assessment of Multiple Potential Benefits Through Integrated Water-Energy Efficiency Measures;Wilkinson,2000

5. Greenhouse-gas emissions from energy use in the water sector

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3