Application of a Perception Neuron® System in Simulation-Based Surgical Training

Author:

Kim Hyun,Hong Nhayoung,Kim Myungjoon,Yoon Sang,Yu Hyeong,Kong Hyoun-Joong,Kim Su-Jin,Chai Young,Choi Hyung,Choi June,Lee Kyu,Kim Sungwan,Kim Hee

Abstract

While multiple studies show that simulation methods help in educating surgical trainees, few studies have focused on developing systems that help trainees to adopt the most effective body motions. This is the first study to use a Perception Neuron® system to evaluate the relationship between body motions and simulation scores. Ten medical students participated in this study. All completed two standard tasks with da Vinci Skills Simulator (dVSS) and five standard tasks with thyroidectomy training model. This was repeated. Thyroidectomy training was conducted while participants wore a perception neuron. Motion capture (MC) score that indicated how long the tasks took to complete and each participant’s economy-of-motion that was used was calculated. Correlations between the three scores were assessed by Pearson’s correlation analyses. The 20 trials were categorized as low, moderate, and high overall-proficiency by summing the training model, dVSS, and MC scores. The difference between the low and high overall-proficiency trials in terms of economy-of-motion of the left or right hand was assessed by two-tailed t-test. Relative to cycle 1, the training model, dVSS, and MC scores all increased significantly in cycle 2. Three scores correlated significantly with each other. Six, eight, and six trials were classified as low, moderate, and high overall-proficiency, respectively. Low- and high-scoring trials differed significantly in terms of right (dominant) hand economy-of-motion (675.2 mm and 369.4 mm, respectively) (p = 0.043). Perception Neuron® system can be applied to simulation-based training of surgical trainees. The motion analysis score is related to the traditional scoring system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3