Imaging and Assessment of the Microstructure of Conserved Archaeological Pine

Author:

Stelzner Ingrid1ORCID,Stelzner Jörg1ORCID,Gwerder Damian2,Martinez-Garcia Jorge2ORCID,Schuetz Philipp2ORCID

Affiliation:

1. Leibniz-Zentrum für Archäologie, 55116 Mainz, Germany

2. Lucerne University of Applied Sciences and Arts, Lucerne School of Engineering and Architecture, 6048 Horw, Switzerland

Abstract

Impressive wooden objects from past cultures can last for centuries or millennia in waterlogged soil. The aim of conservation is to bring the more or less degraded waterlogged archaeological wooden (WAW) finds to a stable state without altering the wood structure through shrinkage, collapse, and deformation. In this study, the most used methods in the conservation practice, such as the alcohol-ether resin method, conservation with the melamine formaldehyde resin Kauramin 800, a mixture of lactitol and trehalose, saccharose, silicone oil, and three different conservation methods with polyethylene glycol followed by freeze-drying were tested. The effects of the conservation agents on the structure of archaeological pine were investigated using optical light microscopy (reflected light microscopy, RLM), scanning electron microscopy (SEM), and X-ray computed tomography (XCT). Through the examinations, most conservation agents could be identified in the structure and their impact on conservation could be analyzed. In particular, it was possible to trace the incorporation of the conservation agents in the lumen, which was influenced by factors, such as wood anatomy, degree of degradation, and drying process. Differences in the mode of action of the conservation processes could also be identified in the composition of the cell wall tracheids.

Funder

Swiss National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3