Water-Assisted Cold Sintering of Alumina Ceramics in SPS Conditions

Author:

Kholodkova Anastasia A.1ORCID,Kornyushin Maxim V.1,Pakhomov Mikhail A.1,Smirnov Andrey V.2,Ivakin Yurii D.34

Affiliation:

1. Statistics Department, Department of Scientific Research Coordination, State University of Management, 109545 Moscow, Russia

2. Laboratory of Ceramic Materials and Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia

3. Mobile Solutions Engineering Center, MIREA—Russian Technological University, 119454 Moscow, Russia

4. Chemistry Department, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract

A developing energy-saving approach of cold sintering in a pure aqueous medium was applied to the preparation of α-Al2O3 ceramics and performed on spark plasma sintering equipment. The initial γ-Al(OH)3 and γ-AlOOH powders and the cold-sintered ceramics were studied by X-ray diffraction analysis, infrared spectroscopy, thermal analysis, and scanning electron microscopy to reveal the chemical and structural transformations they experienced during the cold sintering. At 450 °C and 70 MPa, initially γ-AlOOH transformed into a fragile α-Al2O3 material. Porous α-Al2O3 ceramics with about 60% porosity were obtained after cold sintering of γ-Al(OH)3 in the same conditions combined with subsequent annealing at 1250 °C for 3 h. The role of water molecules in the studied processes was considered as the enhancement of structural mobility in the cold-sintered material due to its reversible hydroxylation similar to earlier investigated supercritical water actions on the precursors during α-Al2O3 formation. Further improvement of the cold sintering setup and regimens would open prospects in α-Al2O3 ceramics manufacturing by an ecologically benign route.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3