Abstract
In this review, we report on the design, fabrication, and characterization of photonic crystal arrays, made of two and three coupled nanocavities. The properties of the cavity modes depend directly on the shape of the nanocavities and on their geometrical arrangement. A non-negligible role is also played by the possible disorder because of the fabrication processes. The experimental results on the spatial distribution of the cavity modes and their physical characteristics, like polarization and parity, are described and compared with the numerical simulations. Moreover, an innovative approach to deterministically couple the single emitters to the cavity modes is described. The possibility to image the mode spatial distribution, in single and coupled nanocavities, combined with the control of the emitter spatial position allows for a deterministic approach for the study of cavity quantum electrodynamics phenomena and for the development of new photonic-based applications.
Reference65 articles.
1. Nanophotonics;Prasad,2004
2. The Physics of Micro/Nano-Fabrication;Brodie,1992
3. Inhibited Spontaneous Emission in Solid-State Physics and Electronics
4. Strong localization of photons in certain disordered dielectric superlattices
5. Photonic Crystals: Molding the Flow of Light;Joannopoulos,2008
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献