Synthesis of Oxide Ceramics in Detonating Atmosphere

Author:

Gibot PierreORCID

Abstract

A detonation process based on 2,4,6 trinitrotoluene (TNT), used as an energetic reagent, was successfully implemented in the synthesis of a series of metal oxide ceramics. TNT offers better physicochemical and mechanical properties than the energetic compounds traditionally used in such processes, thus offering safer handling and transport conditions. The experimental procedure, which consisted to of mixing the energetic molecule with a ceramic salt, was simple to perform. The detonation products were characterized by X-ray diffraction, scanning and transmission electron microscopies, energy dispersive X-ray spectroscopy and nitrogen physisorption. The as-synthesized ceramic powders (CeO2, HfO2, Nb2O5, and In2O3) were crystalline and made of nano-sized quasi-spherical particles. This investigation provides an enhanced detonation synthesis process for elaborating ceramics. The majority of the oxide materials mentioned in this study had never previously been prepared by the detonation process.

Funder

CNRS

Publisher

MDPI AG

Subject

General Medicine

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3