Microstructure and Interface Characteristics of 17-4PH/YSZ Components after Co-Sintering and Hydrothermal Corrosion

Author:

Günther Anne,Moritz TassiloORCID,Mühle Uwe

Abstract

Combining stainless steel with zirconia components by powder technological shaping routes for manufacturing of multifunctional parts is an advantageous and promising one-step method making expensive and time-consuming additional joining steps redundant. However, several requirements for co-shaping and co-sintering of the very different compound partners have to be met. The microstructural and chemical constitution of the interface between both materials plays an important role for the mechanical properties, durability and corrosion resistance of the manufactured parts. In the present study, different shaping techniques for co-shaping of stainless steel and zirconia are introduced. The microstructure and the interphase properties of metal/ceramic hybrid parts have been investigated for samples made by tape casting, subsequent lamination and co-sintering. Nevertheless, the results of this study are valid for components made by other hybrid shaping processes as well. The interfaces were characterized by TEM, FESEM, EDX, and X-ray diffraction. Furthermore, the hydrothermal stability of the material compound was investigated.

Publisher

MDPI AG

Subject

General Medicine

Reference42 articles.

1. 2C ceramics moves into the industrial reality zone

2. Surface engineering by powder coinjection moulding

3. Drei Sonderverfahren in einem—2K-Mikro-Pulverspritzgießen;Finnah;Kunststoffe,2005

4. Glass-Carbon-Composites for Heating Elements Manufactured by 2C-PIM;Mannschatz;Ceram. Appl.,2017

5. Material- and Process Hybridization for Multifunctional Ceramic and Glass Components;Moritz;Ceram. Appl.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3