Affect of the Scattering Asymmetry by Structural Element of Thermal- or Environmental-Barrier Ceramics on Subsurface Radiant Overheating

Author:

Merzlikin Vladimir12ORCID,Safonov Evgeny3ORCID,Kostyukov Andrey4ORCID,Parshina Svetlana2ORCID,Dokukina Anna1ORCID

Affiliation:

1. Department of Economics of Industry, Plekhanov Russian University of Economics, Stremyanny, 36, 117997 Moscow, Russia

2. Department of Technology and Equipment of Mechanical Engineering, Moscow Polytechnic University, Bolshaya Semenovskaya, 38, 111116 Moscow, Russia

3. Faculty of Mechanical Engineering, Moscow Polytechnic University, Bolshaya Semenovskaya, 38, 111116 Moscow, Russia

4. Department of Power Plants for Transport and Small-Scale Power Generation, Moscow Polytechnic University, Bolshaya Semenovskaya, 38, 111116 Moscow, Russia

Abstract

The problem of the formation and estimation of a thermoradiant and temperature field in ceramics Thermal- Environmental-Barrier Coatings (TBC/EBC) has been considered with complex heat transfer but under the influence of the penetrating intense radiant component. The authors proposed to analyze not only TBC but also EBC from the point of view of the optics of semitransparent scattering and absorbing media in the range of ~0.4–4 μm of external radiant action. This paradigm allows us to continue the study of ceramic fibers embedded in ceramic matrix CMCs (C/C, C/SiC, SiC/SiC) as a traditional class of opaque materials. However, at the same time, mullites, Al2O3/Al2O3 have been reviewed as a class of semitransparent elements for designing CMCs. The relevance of studying the effect of oriented fibers on the formation of thermoradiation and temperature fields in a semitransparent material was noted. Modeling the scattering asymmetry coefficient influence (scattering phase function) on the generation of the subsurface thermal radiation source was carried out. The methodology for calculating the thermoradiative field in a semitransparent medium (with relative absorption, scattering indexes, and scattering asymmetry coefficient) was used under a one-dimensional two-flux model as the first approximation for solving the radiative heat transfer equation. Calculations of temperature profiles in opaque and semitransparent ceramics were presented under heat load typical for the combustion chambers operating regime of diesel and gas turbine engines.

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3