Ceramic Stereolithography of Li7La3Zr2O12 Micro-Embossed Sheets for Solid Electrolyte Applications

Author:

Spirrett Fiona1ORCID,Oi Ayaka2,Kirihara Soshu1ORCID

Affiliation:

1. Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan

2. Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan

Abstract

Lithium-ion batteries (LIBs) have significantly advanced portable electronics, yet their reliance on flammable organic solvents and lithium dendrite formation pose safety risks. Solid-state batteries (SSBs), utilizing solid electrolytes, offer a safer alternative with higher energy and power densities. This study explores the fabrication of solid electrolytes using ceramic stereolithography, focusing on lithium lanthanum zirconate (LLZ) due to its high ionic conductivity and chemical stability. A photosensitive paste containing 40–43 vol% LLZ was suitable for processing by stereolithography, and optimized processing parameters of 100 mW laser power and 1000 mm/s laser scanning speed with a 50 μm laser spot size were identified for sufficient material curing and interlayer lamination of LLZ. Thin embossed sheets were designed to enhance ion exchange and reduce internal resistance and were fabricated by the ceramic stereolithography method. The effect of cold isostatic pressing (CIP) on the sintered microstructure was investigated, and the potential for CIP to promote solid-phase diffusion during sintering was demonstrated, particularly at 67 MPa. The resulting LLZ-embossed sheets exhibited dense ceramic microstructures. These findings support the potential application of ceramic stereolithography for fabricating efficient solid electrolytes for next-generation telecommunications and mobile devices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3