Insights for Precursors Influence on the Solar-Assisted Photocatalysis of Greenly Synthesizing Zinc Oxide NPs towards Fast and Durable Wastewater Detoxification

Author:

Essawy Amr A.1,Hussein Modather F.1,Hasanin Tamer H. A.1,El Agammy Emam F.2,Alsaykhan Hissah S.1,Alanazyi Rakan F.1,Essawy Abd El-Naby I.3

Affiliation:

1. Chemistry Department, College of Science, Jouf University, Sakaka P.O. Box 72341, Aljouf, Saudi Arabia

2. Physics Department, College of Science, Jouf University, Sakaka P.O. Box 72341, Aljouf, Saudi Arabia

3. Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

Abstract

Herein, this study has examined the influence of Zn2+ sources during a biogenic-mediated pathway to synthesize ZnO nanoparticles with highly desirable solar-responsive catalytic properties. Salts of nitrate, acetate and chloride have been utilized. The ZnO powders underwent characterization using diverse analytical tools, including XRD, FTIR, Raman, BET, SEM, TEM with EDS/elemental mapping and UV-vis absorption/emission spectroscopic analyses. Accordingly, precursors have proved to affect crystallinity, morphology, surface characteristics, optical properties and the photocatalytic degradation of methylene blue (MB) model pollutant. It was observed that ZnO derived from zinc acetate precursor (Z-AC NPs) exhibits very fast photocatalytic degradation of MB at pH 11 with superior kinetic estimates of 0.314 min−1 and t1/2 = 2.2 min over many of recent reports. In contrast, the chloride precursor is not recommended along with the employed biogenic route. The intriguing findings could be directly correlated to the decreased crystal size, augmented surface area, the hexagonal morphology of the crystals, high potency in absorbing visible photons, high efficacy in separating photogenerated charge carriers and producing high amounts of •OH radicals. Further testing of Z-AC NPs in photocatalytic remediation of water samples from Dumat Aljandal Lake in Aljouf, Saudi Arabia, contaminated with MB and pyronine Y (PY) dyestuffs, showed high dye photodegradation. Therefore, this work could lead to an extremely fast avenue for decontaminating wastewater from hazmat dyestuff.

Funder

Jouf University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3