Influence of Nanoceramic-Plated Waste Carbon Fibers on Alkali-Activated Mortar Performance

Author:

Sambucci Matteo12ORCID,Al-Noaimat Yazeed A.3ORCID,Nouri Seyed Mostafa1ORCID,Chougan Mehdi3,Ghaffar Seyed Hamidreza45,Valente Marco12ORCID

Affiliation:

1. Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, 00184 Rome, Italy

2. INSTM Reference Laboratory for Engineering of Surface Treatments, UdR Rome, Sapienza University of Rome, 00184 Rome, Italy

3. Department of Civil and Environmental Engineering, Brunel University, London UB8 3PH, UK

4. Department of Civil Engineering, University of Birmingham, Dubai International Academic City, Dubai P.O. Box 341799, United Arab Emirates

5. Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan

Abstract

Waste carbon fibers as reinforcing elements in construction materials have recently gained increasing interest from researchers, providing outstanding strength performance and a lower environmental footprint compared to virgin fibers. Combination with cement-free binders, namely alkali-activated materials, is becoming increasingly important for sustainable development in the construction industry. This paper presents results relating to the potential use of waste carbon fibers in alkali-activated mortars. The waste carbon fiber fraction utilized in this research is difficult to integrate as reinforcement in ceramic–cementitious matrices due to its agglomerated form and chemical inertness. For this reason, a nanoceramic coating pretreatment based on nanoclay has been implemented to attempt improvements in terms of deagglomeration, dispersibility, and compatibility with alkali-activated materials. After chemical–physical and microstructural analysis on the nanoclay-plated fibers (including X-ray diffraction, IR spectroscopy, contact angle measurements, and electron microscopy) mortars were produced with four different dosages of treated and untreated waste fibers (0.25 wt.%, 0.5 wt.%, 0.75 wt.%, and 1 wt.%). Mechanical tests and fractographic investigations were then performed. The nanoclay coating interacts compatibly with the waste carbon fibers and increases their degree of hydrophilicity to improve their deagglomeration and dispersion. Compared to the samples incorporating as-received fillers, the addition of nanoclay-coated fibers improved the strength behavior of the mortars, recording a maximum increase in flexural strength of 19% for a fiber content of 0.25 wt.%. This formulation is the only one providing an improvement in mechanical behavior compared to unreinforced mortar. Indeed, as the fibrous reinforcement content increases, the effect of the nanoclay is attenuated by mitigating the improvement in mechanical performance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3