Sonochemical Synthesis of Indium Nitride Nanoparticles and Photocatalytic Composites with Titania

Author:

Paraskevopoulou Aikaterina1ORCID,Pandis Pavlos1ORCID,Argirusis Christos12ORCID,Sourkouni Georgia2ORCID

Affiliation:

1. School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece

2. Clausthaler Zentrum für Materialtechnik, TU Clausthal, Leibnizstr 9, 38678 Clausthal-Zellerfeld, Germany

Abstract

Indium nitride is an excellent semiconductor that belongs to the group of III nitride materials. Due to its unique properties, it is applied to various optoelectronic applications. However, its low thermal stability makes it difficult to synthesize. The present study introduces the synthesis of indium nitride nanoparticles, using ultrasound power (sonochemistry). The sonochemical method provides a low-cost and rapid technique for nanomaterial synthesis. InN nanoparticles were produced in only 3 h through the sonochemical reaction of InCl3 and LiN3. Xylene was used as a reaction solvent. X-ray powder diffraction (XRD) as well as high-resolution transmission electron microscopy (HRTEM) were adopted for the characterization of the obtained powder. According to our results, ultrasound contributed to the synthesis of InN nanocrystals in a cubic and a hexagonal phase. The obtained InN nanoparticles were further used to decorate titanium dioxide (TiO2) by means of ultrasound. The contribution of InN nanoparticles on the processes of photocatalysis was investigated through the degradation of methylene blue (MB), a typical organic substance acting in place of an environment pollutant. According to the obtained results, InN nanoparticles improved the photocatalytic activity of TiO2 by 41.8% compared with commercial micrometric titania.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3