Process Technology, Applications and Thermal Resistivity of Basalt Fiber Reinforced SiOC Composites

Author:

Gadow ,Weichand ,Jiménez

Abstract

Promising lightweight composite materials, bridging the gap between Polymer and Ceramic Matrix Composites, are manufactured as polymer derived ceramics by the use of polysiloxanes and basalt fibers. Such competitive free formable Hybrid Composites are supposed to be capable for lightweight applications in a temperature range between 300 °C and 850 °C and short time exposure up to over 1000 °C, even in oxidative atmosphere. Cheap raw materials like basalt fibers and siloxane resins in combination with performing manufacturing technologies can establish completely new markets for intermediate temperature composites. These attributes enable the Hybrid Composites as ideal material for fire retardant applications in automotive engineering and public transportation, as well as in fire protection systems in electrical and civil engineering applications. In this study, the most prominent fields of application and engineering solutions for Hybrid-CMC are reviewed and the results of the thermal resistivity analysis effectuated on basalt fiber reinforced SiOC samples are presented. This study consisted of several air exposures between 1 h and 50 h and temperatures in the range of 650 °C to 1100 °C. Remaining mechanical resistance was characterized by Impulse Excitation Technique (IET) and Interlaminar Shear Strength (ILSS) tests. Basalt fiber reinforced samples exhibited a decent level of mechanical performance even after the most demanding exposures. Due to the poor oxidation resistance of carbon fibers, Cf/SiOC composites were completely degraded after long-term exposure at 500 °C in air.

Publisher

MDPI AG

Subject

General Medicine

Reference14 articles.

1. CES Edupackhttps://grantadesign.com/industry/products/ces-selector/

2. Feuerwehr Sögelhttps://www.noz.de/lokales/lathen/artikel/740181/windkraftanlage-in-renkenberge-ausgebrannt#gallery&0&0&740181

3. Galleryhttps://www.complex.com/sports/2012/10/gallery-25-pictures-of-supercars-on-fire/lamborghini-murcielago

4. Deutsche Presse-Agentur; Freyhttps://www.merkur.de/welt/ice-brand-bei-montabaur-teile-von-ice-wrack-abtransportiert-strecke-weiter-gesperrt-zr-10321277.html

5. Design and engineering of carbon brakes

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3