Effect of SiC on Microstructure, Phase Evolution, and Mechanical Properties of Spark-Plasma-Sintered High-Entropy Ceramic Composite

Author:

Zhang HanzhuORCID,Akhtar Farid

Abstract

Ultra-high temperature ceramic composites have been widely investigated due to their improved sinterability and superior mechanical properties compared to monolithic ceramics. In this work, high-entropy boron-carbide ceramic/SiC composites with different SiC content were synthesized from multicomponent carbides HfC, Mo2C, TaC, TiC, B4C, and SiC in spark plasma sintering (SPS) from 1600 °C to 2000 °C. It was found that the SiC addition tailors the phase formation and mechanical properties of the high-entropy ceramic (HEC) composites. The microhardness and fracture toughness of the HEC composites sintered at 2000 °C were improved from 20.3 GPa and 3.14 MPa·m1/2 to 26.9 GPa and 5.95 MPa·m1/2, with increasing SiC content from HEC-(SiC)0 (0 vol. %) to HEC-(SiC)3.0 (37 vol. %). The addition of SiC (37 vol. %) to the carbide precursors resulted in the formation of two high-entropy ceramic phases with two different crystal structures, face-centered cubic (FCC) structure, and hexagonal structure. The volume fraction ratio between the hexagonal and FCC high-entropy phases increased from 0.36 to 0.76 when SiC volume fraction was increased in the composites from HEC-(SiC)0 to HEC-(SiC)3.0, suggesting the stabilization of the hexagonal high-entropy phase over the FCC phase with SiC addition.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3