Hydroxyapatite-Resin Composites Produced by Vat Photopolymerization and Post-Processing via In Situ Hydrolysis of Alpha Tricalcium Phosphate

Author:

Oliver-Urrutia Carolina1ORCID,Drotárová Lenka1,Gascón-Pérez Sebastián1ORCID,Slámečka Karel12,Ravaszová Simona3,Čelko Ladislav1ORCID,Montufar Edgar B.1ORCID

Affiliation:

1. Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic

2. Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

3. Faculty of Civil Engineering, Brno University of Technology, Veveří 95, 60200 Brno, Czech Republic

Abstract

Vat photopolymerization is an additive manufacturing technique that utilizes photosensitive resins to fabricate 3D polymeric objects with high precision. However, these objects often lack mechanical strength. This study investigated the strengthening of a resin based on epoxidized soybean oil acrylate, specifically designed for vat photopolymerization, by the in situ formation of hydroxyapatite nanocrystals. First, a stable alpha tricalcium phosphate (α-TCP)-resin feedstock mixture was developed (~30 vol.% α-TCP), which proved suitable for fabricating monoliths as well as complex triply periodic minimal surface (gyroid, diamond, and Schwarz) porous structures through vat photopolymerization. The results demonstrated that the incorporation of α-TCP particles led to a significant mechanical improvement of the resin. Second, post-printing hydrothermal treatments were utilized to transform the α-TCP particles into hydroxyapatite crystals within the resin. It was observed that the space between hydroxyapatite crystals within the composites was occupied by the cured resin, resulting in a more compact, stronger, and mechanically more reliable material than the porous hydroxyapatite produced by the hydrolysis of α-TCP mixed with water. Moreover, water absorption during the hydrothermal treatments caused the plasticization of the cured resin. As a consequence, the hydroxyapatite-resin composites displayed slightly lower mechanical properties compared to the as-printed α-TCP-resin composite.

Funder

Czech Ministry of Education, Youth and Sports

Brno University of Technology

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3