Excellent Energy Storage and Photovoltaic Performances in Bi0.45Na0.45Ba0.1TiO3-Based Lead-Free Ferroelectricity Thin Film

Author:

Wu Jianhua12,Zhang Tiantian1,Gao Xing1,Ning Lei1,Hu Yanhua3,Lou Xiaojie4ORCID,Liu Yunying1,Sun Ningning1,Li Yong1ORCID

Affiliation:

1. Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and Devices, School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

3. Department of Chemical Engineering, Ordos Institute of Technology, Erdos 017000, China

4. State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Inorganic dielectric films have attracted extensive attention in the field of microelectronic and electrical devices because of their wide operating temperature range, small size, and easy integration. Here, we designed and prepared eco-friendly (1-x)Bi0.45Na0.45Ba0.1TiO3-xBi(Mg1/3Nb2/3)O3 multifunctional ferroelectric thin films for energy storage and photovoltaic. The results show that Bi(Mg1/3Nb2/3)O3 can effectively improve the energy storage performance. At x = 0.05, the energy storage density and efficiency are as high as 73.1 J/cm3 and 86.2%, respectively, and can operate stably in a wide temperature range. The breakdown field strength of the thin films increased significantly, and the analysis showed that the addition of Bi(Mg1/3Nb2/3)O3 caused a change in the internal conduction mechanism. At the same time, the generation of polar nanoregions increases the relaxation characteristics, thus improving the energy storage properties. In addition, the thin film material also has excellent ferroelectric photovoltaic properties. This work represents a new design paradigm that can serve as an effective strategy for developing advanced multi-functional materials.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3