CaO-SiO2-B2O3 Glass as a Sealant for Solid Oxide Fuel Cells

Author:

Zhigachev Andrey O.,Agarkova Ekaterina A.,Matveev Danila V.,Bredikhin Sergey I.

Abstract

Solid oxide fuel cells (SOFCs) are promising devices for electrical power generation from hydrogen or hydrocarbon fuels. The paper reports our study of CaO-SiO2-B2O3 material with composition 36 mol.% SiO2, 26 mol.% B2O3, and 38 mol.% CaO as a high-temperature sealant for SOFCs with an operating temperature of 850 °C. The material was studied as an alternative to presently existing commercial glass and glass-ceramics sealants for SOFCs with operating temperature of 850 °C. Many of these sealants have limited adhesion to the surface of Crofer 22APU steel, commonly used in these SOFCs. The present study included X-ray diffraction, dilatometric, thermal, and microstructural analysis The study has shown that the softening point of the CaO-SiO2-B2O3 glass is around 900 °C, allowing sealing of the SOFCs with this glass at convenient temperature of 925 °C. The CaO-SiO2-B2O3 glass sealant has shown excellent adhesion to the surface of Crofer 22APU steel; SEM images demonstrated evidences of chemical reaction and formation of strong interface on sealant–steel contact surface. Furthermore, the glass has shown a coefficient of thermal expansion about 8.4 × 10−6 1/K after sealing, making it thermomechanically compatible with the existing SOFC materials.

Funder

Russian Science Foundation

Grant of the President of Russian Federation

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

Reference28 articles.

1. Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects;Kaur,2019

2. Intermediate-Temperature Solid Oxide Fuel Cells;Shao,2016

3. Thermal expansion of SOFC materials

4. Review on silicate and borosilicate‐based glass sealants and their interaction with components of solid oxide fuel cell

5. Stable sealing glass for planar solid oxide fuel cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3