The Effect of Titanium Oxide Additions on the Phase Chemistry and Properties of Chromite-Magnesia Refractories

Author:

De Villiers Johan PR,Mulange Delphin,Garbers-Craig Andrie Mariana

Abstract

The microstructure of a direct-bonded chromite-magnesia refractory brick, typically used in copper and platinum converters, was modified by adding different amounts of nano-size TiO2 to the raw material mixture. Bricks with 0, 1, 3, 5, and 7 mass% TiO2 were produced and compared in terms of spinel formation; the role of the tetravalent cation Ti4+ in the bonding phase; as well as changes in density, porosity, thermal expansion, and internal stress. This was done through a comprehensive XRD and SEM-EDS study. It was found that Ti is accommodated in the secondary spinel that has formed, where Mg in excess of unity in the tetrahedral site combines with an equal amount of Ti in the octahedral sites to maintain charge balance. The 1 mass% TiO2 brick had the lowest bulk density (but not significantly different from the original chromite-magnesia brick), the smallest difference in unit cell volumes between the primary and secondary spinels, and the lowest stress arising from the smallest difference in linear thermal expansion coefficients of the phases present. The calculated porosities correspond well with experimentally determined apparent porosity values, whereas the linear thermal expansion coefficients calculated at 1392K are similar to the values measured from 293 to 1273 K.

Publisher

MDPI AG

Subject

General Medicine

Reference30 articles.

1. Chromite—A cost-effective refractory raw material for refractories in various metallurgical applications;McEwan,2001

2. Overview of wear phenomena in lead processing furnaces

3. The benefits and knowledge gained in refractory testing with slag and nickel matte

4. Role of technical innovation on production delivery at the Polokwane Smelter;Nelson,2005

5. Effect of nano iron oxide as an additive on phase and microstructural evolution of Mag-Chrome refractory matrix

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3