A CFD Analysis of the Desalination Performance of Ceramic-Based Hollow Fiber Membranes in Direct Contact Membrane Distillation

Author:

Alrefaai MHD Maher1,Othman Mohd Hafiz Dzarfan1,Rava Mohammad2ORCID,Tai Zhong Sheng1,Asnaghi Abolfazl3,Puteh Mohd Hafiz4,Jaafar Juhana1,Rahman Mukhlis A.1,Al-Ogaili Mohammed Faleh Abd1

Affiliation:

1. Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia

2. Faculty of Computing, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia

3. Department of Research and Development, Abecator CFD, 42523 Gothenburg, Sweden

4. Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia

Abstract

In this numerical study, the performance of ceramic-based mullite hollow fiber (HF) membranes in a direct contact membrane distillation (DCMD) process was evaluated. Three types of membranes were tested: (i) hydrophobic membrane C8-HFM, (ii) rod-like omniphobic membrane (C8-RL/TiO2), and (iii) flower-like omniphobic membrane (C8-FL/TiO2). The CFD model was developed and validated with experimental results, which were performed over a 500 min period. The initial mass flux of C8-HFM was 30% and 9% higher than that of C8-FL/TiO2 and C8-RL/TiO2, respectively. However, the flower-like omniphobic membrane C8-FL/TiO2 had the lowest drop in flux, around 11%, while the rod-like omniphobic membrane C8-RL/TiO2 had a 15% reduction, both better than the 23% reduction in the hydrophobic membrane C8-HFM over the 500 min. The study also analyzed the impact of fouling by examining the variation in mass transfer coefficient (MTC) over time. The results indicated that the ceramic-based mullite HF membranes with TiO2 flowers and rods demonstrated a high resistance to fouling compared to C8-HFM. The modified membranes could find applications in the desalination and handling of seawater samples containing organic contaminants. The CFD model’s versatility can be utilized beyond the current investigation’s scope, offering a valuable tool for efficient membrane development solutions, particularly for challenges such as the presence of organic contaminants in seawater.

Funder

Universiti Teknologi Malaysia

UTM Fundamental Research

Matching Grant

UMW

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3