Investigation of Variability of Flaw Strength Distributions on Brittle SiC Ceramic

Author:

Lamon Jacques1ORCID

Affiliation:

1. Laboratory Mechanical Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, 91192 Gif-sur-Yvette, France

Abstract

The present paper investigates flaw strength distributions established using various flexural tests on batches of SiC bar test specimens, namely four-point bending as well as three-point bending tests with different span lengths. Flaw strength is provided by the elemental stress operating on the critical flaw at the fracture of a test specimen. Fracture-inducing flaws and their locations are identified using fractography. A single population of pores was found to dominate the fracture. The construction of diagrams of p-quantile vs. elemental strengths was aimed at assessing the Gaussian nature of flaw strengths. Then, empirical cumulative distributions of strengths were constructed using the normal distribution function. The Weibull distributions of strengths are then compared to the normal reference distributions. The parameters of the Weibull cumulative probability distributions are estimated using maximum likelihood and moment methods. The cumulative distributions of flexural strengths for the different bending tests are predicted from the flaw strength density function using the elemental strength model, and from the cumulative distribution of flexural strength using the Weibull function. Flaw strength distributions that include the weaker flaws that are potentially present in larger test pieces are extrapolated using the p-quantile diagrams. Implications are discussed regarding the pertinence of an intrinsically representative flaw strength distribution, considering failure predictions. Finally, the influence of the characteristics of fracture-inducing flaw populations expressed in terms of flaw strength interval, size, dispersion, heterogeneity, and reproducibility with volume change is examined.

Publisher

MDPI AG

Reference29 articles.

1. A statistical distribution function of wide applicability;Weibull;J. Appl. Mech.,1951

2. Lamon, J. (2017). Brittle Fracture and Damage of Brittle Materials and Composites: Statistical-Probabilistic Approaches, ISTE Press–Elsevier.

3. A new probability index for estimating Weibull modulus for ceramics with least square method;Gong;J. Mater. Sci. Lett.,2000

4. Probability plotting methods and order statistics;Barnett;J. R. Stat. Soc.,1975

5. An examination of statistical theories for fibrous materials in the light of experimental data;Watson;J. Mater. Sci.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3