Received Probability of Vortex Modes Carried by Localized Wave of Bessel–Gaussian Amplitude Envelope in Turbulent Seawater

Author:

Deng Shibao,Zhu Yun,Zhang Yixin

Abstract

By using the two-frequency coherence function model of a beam in a turbulent medium and the localized wave theory of the polychromatic beam, we develop the spectrum average mutual coherence function of the localized wave of Bessel–Gaussian amplitude envelope and the spectrum average coherence length of spherical wave. By the spectrum average coherence length and the spectrum average mutual coherence function, we construct a received probability of vortex modes carried by localized wave of Bessel–Gaussian amplitude envelope in anisotropic turbulent seawater. Our results show that the received probability of signal vortex modes increases with the increase of half-modulated pulse width of the input pulse, turbulent inner scale, anisotropic factor of turbulence and rate of dissipation of kinetic energy per unit mass of fluid, but it increases with the decrease of the Bessel cone angle and the dissipation rate of the mean-squared temperature. We also find that there is a maximum effective beam waist for a given receiving aperture, and the vortex mode is more sensitive to salinity fluctuations than to temperature fluctuations in turbulence. Our conclusions show that localized wave of Bessel–Gaussian amplitude envelope is a more suitable beam for the vortex mode communication than conventional vortex waves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3