Design of a Horizontal Axis Tidal Turbine for Less Energetic Current Velocity Profiles

Author:

Encarnacion Job ImmanuelORCID,Johnstone Cameron,Ordonez-Sanchez Stephanie

Abstract

Existing installations of tidal-stream turbines are undertaken in energetic sites with flow speeds greater than 2 m/s. Sites with lower velocities will produce far less power and may not be as economically viable when using “conventional” tidal turbine designs. However, designing turbines for these less energetic conditions may improve the global viability of tidal technology. Lower hydrodynamic loads are expected, allowing for cost reduction through downsizing and using cheaper materials. This work presents a design methodology for low-solidity high tip-speed ratio turbines aimed to operate at less energetic flows with velocities less than 1.5 m/s. Turbines operating under representative real-site conditions in Mexico and the Philippines are evaluated using a quasi-unsteady blade element momentum method. Blade geometry alterations are undertaken using a scaling factor applied to chord and twist distributions. A parametric filtering and multi-objective decision model is used to select the optimum design among the generated blade variations. It was found that the low-solidity high tip-speed ratio blades lead to a slight power drop of less than 8.5% when compared to the “conventional” blade geometries. Nonetheless, an increase in rotational speed, reaching a tip-speed ratio (TSR) of 7.75, combined with huge reduction in the torque requirement of as much as 30% paves the way for reduced costs from generator downsizing and simplified power take-off mechanisms.

Funder

Department of Science and Technology, Republic of the Philippines

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference58 articles.

1. Evaluation and comparison of the levelized cost of tidal, wave, and offshore wind energy

2. European Marine Energy Centre LTD http://www.emec.org.uk/marine-energy/tidal-developers/

3. Scotrenewables SR2000 https://orbitalmarine.com/technology-development/sr2000

4. Atlantis SSIMEC MeyGen https://simecatlantis.com/projects/meygen/

5. Atlantis AR2000 https://simecatlantis.com/2018/09/13/simec-atlantis-energy-unveils-worlds-largest-single-rotor-tidal-turbine-the-ar2000/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3