Assessing the Unreliability of Systems during the Early Operation Period of a Ship—A Case Study

Author:

Chybowski LeszekORCID,Gawdzińska KatarzynaORCID,Laskowski Rafał

Abstract

Sea-going ships are unique systems, and each ship—even those which are mass-produced—are different. Once in service, they are subjected to unique environmental exposure due to a variety of factors, including, but not limited to, their mode of operation, sailing area, cargo, hydrometeorological conditions, crew training, etc. This makes it very difficult, if not impossible, to compare individual units. The aim of this study is to present the damage data and analysis of a selected vessel—a complex technical system—during its first year of operation. To that end, the paper analyses the unreliability of a bulk cargo ship’s technical and energetic system components during its first year of operation. The paper also introduces the failure susceptibility of its technical systems, defines concepts of wear and failure and describes the object of analysis. Observed failures in subsystem components of the marine power plant, in the general systems and in the technological system of the ship, were presented in tabular form. Each failure was described by considering the time of operation until the first failure, type of failure, type of wear, nature of an event and methods used to regain efficiency. Selected failures were described in great detail, and the statistics of the ship’s components’ susceptibility to failure were presented by considering the wear type that caused a failure, the component type and the time to the first failure. Additionally the severity of each failure is discussed. Finally, conclusions regarding the susceptibility to failure of particular ship components were presented.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

1. Components Importance Analysis in Complex Technical Systems;Chybowski,2014

2. World economic crisis and its implications for maritime transport sector

3. ESTIMATION OF EXHAUST SHIP EMISSION FROM MARINE TRAFFIC IN THE STRAITS OF SINGAPORE AND BATAM WATERWAYS USING AUTOMATIC IDENTIFICATION SYSTEM (AIS) DATA

4. Technological and Energetic Systems of Offshore Vesselss;Balcerski,1998

5. A Comparative Components Importance analysis of A Complex Technical System with The Use of Different Importance Measures;Chybowski,2014

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3