Experimental Study on Toe Scouring at Sloping Walls with Gravel Foreshores

Author:

Salauddin M.ORCID,Pearson J. M.

Abstract

Sea defences, such as urban seawalls can fail due to the development of a scour hole at the toe of the structure. The scour depth or the information on ground levels at the structure toe is required for the sustainable management of coastal defences, due to its influence on the structural performance. This research reports and summarises the main findings of a new laboratory study on toe scouring at a smooth sloping wall with permeable gravel foreshore. A set of small-scale laboratory experiments of wave-induced scouring at sloping seawalls were conducted. Two gravel sediments of prototype d50 values of 13 mm and 24 mm were used to simulate the permeable 1:20 (V:H) gravel beach configurations in the front of a smooth 1 in 2 sloping wall. Each experiment comprised of a sequence of around 1000 random waves of a JONSWAP energy spectrum with a peak enhancement factor of 3.3. The relationship of the scour depth with toe water depth, Iribarren number, and wall slope were investigated from the test results of this work and through a comparison with available datasets in the literature. The results of this study showed that the relative toe water depth and Iribarren number influence the relative toe scour depth at a sloping structure on a shingle beach. Within the experimental limitations, the maximum toe scour depths were observed for the experiments under spilling and plunging wave attack.

Funder

Natural Environment Research Council

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference27 articles.

1. The occurrence and effects of wave impacts

2. Toe Scour at Sea Walls Subject to Wave Action: A Literature Review;Powell,1987

3. Scour Problems and Methods for Prediction of Maximum Scour at Vertical Seawalls;Fowler,1992

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3