Hydrogen Storages Based on Graphene Nano-Flakes: Density Functional Theory Approach

Author:

Tachikawa HirotoORCID

Abstract

Carbon materials such as graphene, carbon nanotubes, fullerene, and graphene nanoflakes (GNFs) are used for hydrogen storage. The doping of alkali metals to these materials generally increases the accumulation density of molecular hydrogen (H2). However, the reason why the doping enhances the ability of the H2 storage of GNF is not clearly known, although there are some explanations. In addition, the information on the storage capacity of GNF is ambiguous. In the present review article, we introduce our recent theoretical studies on the interaction of GNF with H2 molecules carried out to elucidate the mechanism of hydrogen storage in alkali-doped GNFs. As alkali metals, lithium (Li), sodium (Na), and potassium (K) were examined, and the abilities of hydrogen storage were discussed. Next, the mechanism of Li-diffusion on GNF, which plays a crucial role in Li-battery, was presented. There are several unanswered questions. In particular, does lithium diffuse randomly on GNF? Or is there a specific diffusion path? We present our study, which elucidates the factors governing lithium diffusion on GNF. If the dominant factor is known, it is possible to arbitrarily control the diffusion path of lithium. This will lead to the development of highly functional battery materials. Finally, the molecular design of H adsorption–desorption reversible storage devices based on GNF will be introduced. Elucidating the mechanism of hydrogen storage, Li-diffusion on GNF, and molecular design of storage device is important in understanding the current molecular devices and provide a deeper insight into materials chemistry.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3