Isoprostanoid Profiling of Marine Microalgae

Author:

Vigor ClaireORCID,Oger CamilleORCID,Reversat Guillaume,Rocher Amandine,Zhou Bingqing,Linares-Maurizi Amandyne,Guy Alexandre,Bultel-Poncé Valérie,Galano Jean-Marie,Vercauteren JosephORCID,Durand ThierryORCID,Potin Philippe,Tonon ThierryORCID,Leblanc Catherine

Abstract

Algae result from a complex evolutionary history that shapes their metabolic network. For example, these organisms can synthesize different polyunsaturated fatty acids, such as those found in land plants and oily fish. Due to the presence of numerous double-bonds, such molecules can be oxidized nonenzymatically, and this results in the biosynthesis of high-value bioactive metabolites named isoprostanoids. So far, there have been only a few studies reporting isoprostanoid productions in algae. To fill this gap, the current investigation aimed at profiling isoprostanoids by liquid chromatography -mass spectrometry/mass spectrometry (LC-MS/MS) in four marine microalgae. A good correlation was observed between the most abundant polyunsaturated fatty acids (PUFAs) produced by the investigated microalgal species and their isoprostanoid profiles. No significant variations in the content of oxidized derivatives were observed for Rhodomonas salina and Chaetoceros gracilis under copper stress, whereas increases in the production of C18-, C20- and C22-derived isoprostanoids were monitored in Tisochrysis lutea and Phaeodactylum tricornutum. In the presence of hydrogen peroxide, no significant changes were observed for C. gracilis and for T. lutea, while variations were monitored for the other two algae. This study paves the way to further studying the physiological roles of isoprostanoids in marine microalgae and exploring these organisms as bioresources for isoprostanoid production.

Funder

Agence Nationale de la Recherche

Joint Programming Initiative A healthy diet for a healthy life

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3