Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization

Author:

Tran Huu Q.1ORCID,Lee Byung Moo2ORCID

Affiliation:

1. Faculty of Electronics Technology (FET), Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

2. Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea

Abstract

In this paper, we propose a novel system integrating reconfigurable intelligent surfaces (RISs) with cognitive radio (CR) technology, presenting a forward-looking solution aligned with the evolving standards of 6G and beyond networks. The proposed RIS-assisted CR networks operate with a base station (BS) transmitting signals to two users, the primary user (PU) and secondary user (SU), through direct and reflected signal paths, respectively. Our mathematical analysis focuses on deriving expressions for SU in the RIS-assisted CR system, validated through Monte Carlo simulations. The investigation covers diverse aspects, including the impact of the signal-to-noise ratio (SNR), power allocations, the number of reflected surfaces, and blocklength variations. The results provide nuanced insights into RIS-assisted CR system performance, highlighting its sensitivity to factors like the number of reflectors, fading severity, and correlation coefficient. Careful parameter selection, such as optimizing the configuration of reflectors, is shown to prevent a complete outage, showcasing the system’s robustness. Additionally, the work suggests that the optimization of reflectors configuration can significantly enhance overall system performance, and RIS-assisted CR systems outperform reference schemes. This work contributes a thorough analysis of the proposed system, offering valuable insights for efficient performance evaluation and parameter optimization in RIS-assisted CR networks.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3