Energy-Saving Adaptive Routing for High-Speed Railway Monitoring Network Based on Improved Q Learning

Author:

Fu Wei1,Peng Qin1,Hu Canwei1

Affiliation:

1. Key Laboratory of Industrial Internet of Things and Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

In high-speed railway operational monitoring network systems targeting railway infrastructure as its monitoring objective, there is a wide variety of sensor types with diverse operational requirements. These systems have varying demands on data transmission latency and network lifespan. Most of the previous research focuses only on prolonging network lifetime or reducing data transmission delays when designing or optimizing routing protocols, without co-designing the two. In addition, due to the harsh operating environment of high-speed railways, when the network changes dynamically, the traditional routing algorithm generates unnecessary redesigns and leads to high overhead. Based on the actual needs of high-speed railway operation environment monitoring, this paper proposes a novel Double Q-values adaptive model combined with the existing reinforcement learning method, which considers the energy balance of the network and real-time data transmission, and constructs energy saving and delay. The two-dimensional reward avoids the extra overhead of maintaining a global routing table while capturing network dynamics. In addition, the adaptive weight coefficient is used to ensure the adaptability of the model to each business of the high-speed railway operation environment monitoring system. Finally, simulations and performance evaluations are carried out and compared with previous studies. The results show that the proposed routing algorithm extends the network lifecycle by 33% compared to the comparison algorithm and achieves good real-time data performance. It also saves energy and has fewer delays than the other three routing protocols in different situations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Design of a Delay Reduction Model using Enhanced Routing Protocol to Ensure Lifetime Enhancement of Nodes in Wireless Sensor Network;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3