Abstract
This work studies the effect of azobenzene dye Disperse Red 1 (DR1) doping and annealing on the thermomechanical and photomechanical properties of poly(methyl methacrylate) (PMMA) fibers. The mechanical properties are measured as a function of temperature, pump light intensity, and polarization. We find that doping with DR1 increases the stiffness and the glass transition temperature (Tg) of the PMMA fibers. Moreover, annealing below Tg decreases Young’s modulus and increases Tg. Finally, the photothermal heating contribution to the photomechanical response and the length change during laser exposure are determined in both unannealed and annealed plain PMMA and DR1-doped PMMA fibers. We find that photothermal heating is the dominant mechanism and the effect of photoisomerization is negligible. The temperature-dependent photomechanical efficiencies are also determined.
Funder
National Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献