A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep Learning System for Network Intrusion Detection

Author:

Qazi Emad Ul Haq,Almorjan Abdulrazaq,Zia TanveerORCID

Abstract

The connectivity of devices through the internet plays a remarkable role in our daily lives. Many network-based applications are utilized in different domains, e.g., health care, smart environments, and businesses. These applications offer a wide range of services and provide services to large groups. Therefore, the safety of network-based applications has always been an area of research interest for academia and industry alike. The evolution of deep learning has enabled us to explore new areas of research. Hackers make use of the vulnerabilities in networks and attempt to gain access to confidential systems and information. This information and access to systems can be very harmful and portray losses beyond comprehension. Therefore, detection of these network intrusions is of the utmost importance. Deep learning based techniques require minimal inputs while exploring every possible feature set in the network. Thus, in this paper, we present a one-dimensional convolutional neural network-based deep learning architecture for the detection of network intrusions. In this research, we detect four different types of network intrusions, i.e., DoS Hulk, DDoS, and DoS Goldeneye which belong to the active attack category, and PortScan, which falls in the passive attack category. For this purpose, we used the benchmark CICIDS2017 dataset for conducting the experiments and achieved an accuracy of 98.96% as demonstrated in the experimental results.

Funder

Security Research Center at Naif Arab University for Security Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3