Author:
Huang Bo,Liu Zhongyan,Xu Yujing,Ding Qiaochu,Pan Mengchun,Hu Jiafei,Zhang Qi
Abstract
Underwater vehicles generate hydrodynamic wakes within a large area that last for a longtime during navigation, thus generating induced magnetic fields, and these are of great significance for detecting and tracking underwater vehicles. In combination with the wakefield and magnetic field simulations, this study adopts the dynamic overlapping mesh technology to conduct a numerical simulation of the wake magnetic field during the movement of an underwater vehicle. This paper introduces the causes of formation and laws of evolution of the wake magnetic field, analyzes its spatial distribution and time-domain changes, and discusses the time-frequency domain characteristics at different monitoring points as well as the effects of navigation speed and acceleration on wake magnetic fields. Our results indicate that the wake magnetic field of an underwater vehicle belongs to a low-frequency weak signal of 0–5 Hz; as the navigation speed increases, the barycenter frequency of the wake magnetic field decreases and the half-energy bandwidth increases. The increase in acceleration of the underwater vehicle will cause a higher growth rate of the wake magnetic field. This paper provides a theoretical reference for the detection of underwater vehicles based on wake magnetic fields.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献