A Two-Stage Decomposition-Reinforcement Learning Optimal Combined Short-Time Traffic Flow Prediction Model Considering Multiple Factors

Author:

Qu Dayi,Chen Kun,Wang Shaojie,Wang Qikun

Abstract

Accurate short-term traffic flow prediction is a prerequisite for achieving an intelligent transportation system to proactively alleviate traffic congestion. Considering the complex and variable traffic environment, so that the traffic flow contains a large number of non-linear characteristics, which makes it difficult to improve the prediction accuracy, a combined prediction model that reduces the unsteadiness of traffic flow and fully extracts the traffic flow features is proposed. Firstly, decompose the traffic flow data into multiple components by the seasonal and trend decomposition using loess (STL); these components contain different features, and the optimized variational modal decomposition (VMD) is used for the second decomposition of the component with large fluctuation frequencies, and then the components are reconstructed according to the fuzzy entropy and Lempel-Ziv complexity index and the Pearson correlation coefficient is used to filter the traffic flow features. Then light gradient boosting machine (LightGBM), long short-term memory with attention mechanism (LA), and kernel extreme learning machine with genetic algorithm optimization (GA-KELM) are built for prediction. Finally, we use reinforcement learning to integrate the advantages of each model, and the weights of each model are determined to obtain the best prediction results. The case study shows that the model established in this paper is better than other models in predicting urban road traffic flow, with an average absolute error of 2.622 and a root mean square error of 3.479, both of which are lower than the prediction errors of other models, indicating that the model can fully extract the features in complex traffic flow.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3