Abstract
Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug to treat pain and inflammatory diseases. The high consumption of the drug leads to a significant change in the ecosystem. With the aim of optimizing a fast screening analysis for DCF detection on many samples with a sensitive and cheap procedure, we considered electrochemical methods using carbon-based electrodes as sensors. The electrochemical behavior of the DCF was studied on glassy carbon electrodes (GCE) and on screen-printed carbon electrodes (SPCEs) from two different suppliers after an anodic activation. The surface of the SPCEs was analyzed by scanning electron microscope (SEM) and Energy Dispersive Spectrometry (EDS). On all the activated electrodes, the voltammetric procedure (Differential Pulse Voltammetry) for the determination of DCF was optimized by the Experimental Design method, and the linearity range of the response, as well as the calibration and limit parameters (limits of detection—LoD; limit of quantification—LoQ), were defined. Analyses on SPCEs were performed both by immersing the electrode in the solution and by deposing a drop of solution on the electrode. DCF signals are stabilized by the polishing process and enhanced by the anodic activation and acid pH. The electrochemical response of DCF is not reversible, and its by-products tend to be adsorbed on the surfaces, particularly on GCE. The lowest limit parameters were obtained using the GCE (LoD = 1.6 µg L−1) and the SPCE, having the smallest surface, immersed in solution (LoD = 7 µg L−1).
Funder
Ministry of Education, Universities and Research
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献