Conceptual Process Design, Energy and Economic Analysis of Solid Waste to Hydrocarbon Fuels via Thermochemical Processes

Author:

A. Gabbar HossamORCID,Aboughaly MohamedORCID

Abstract

Thermochemical processes use heat and series of endothermic chemical reactions that achieve thermal cracking and convert a wide range of solid waste deposits via four thermochemical processes to hydrocarbon gaseous and liquid products such as syngas, gasoline, and diesel. The four thermochemical reactions investigated in this research article are: incineration, pyrolysis, gasification, and integrated gasification combined cycle (IGCC). The mentioned thermochemical processes are evaluated for energy recovery pathways and environmental footprint based on conceptual design and Aspen HYSYS energy simulation. This paper also provides conceptual process design for four thermochemical processes as well as process evaluation and techno-economic analysis (TEA) including energy consumption, process optimization, product yield calculations, electricity generation and expected net revenue per tonne of feedstock. The techno-economic analysis provides results for large scale thermochemical process technologies at an industrial level and key performance indicators (KPIs) including greenhouse gaseous emissions, capital and operational costs per tonne, electrical generation per tonne for the four mentioned thermochemical processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference53 articles.

1. Trends in Solid Waste Management,2020

2. Technical Document on Municipal Solid Waste Organics Processing,2013

3. Waste Generation

4. Revisiting estimates of municipal solid waste generation per capita and their reliability

5. The Ocean

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3