Affiliation:
1. Department of Information and Computer Sciences, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan
2. Gedu College of Business Studies, Royal University of Bhutan, Bongo, Chukha P.O. Box 21006, Bhutan
Abstract
Resource Constraint Project Scheduling Problems with Discounted Cash Flows (RCPSPDC) focuses on maximizing the net present value by summing the discounted cash flows of project activities. An extension of this problem is the Payment at Event Occurrences (PEO) scheme, where the client makes multiple payments to the contractor upon completion of predefined activities, with additional final settlement at project completion. Numerous approximation methods such as metaheuristics have been proposed to solve this NP-hard problem. However, these methods suffer from parameter control and/or the computational cost of correcting infeasible solutions. Alternatively, approximate dynamic programming (ADP) sequentially generates a schedule based on strategies computed via Monte Carlo (MC) simulations. This saves the computations required for solution corrections, but its performance is highly dependent on its strategy. In this study, we propose the hybridization of ADP with three different metaheuristics to take advantage of their combined strengths, resulting in six different models. The Estimation of Distribution Algorithm (EDA) and Ant Colony Optimization (ACO) were used to recommend policies for ADP. A Discrete cCuckoo Search (DCS) further improved the schedules generated by ADP. Our experimental analysis performed on the j30, j60, and j90 datasets of PSPLIB has shown that ADP–DCS is better than ADP alone. Implementing the EDA and ACO as prioritization strategies for Monte Carlo simulations greatly improved the solutions with high statistical significance. In addition, models with the EDA showed better performance than those with ACO and random priority, especially when the number of events increased.