MMD-MSD: A Multimodal Multisensory Dataset in Support of Research and Technology Development for Musculoskeletal Disorders

Author:

Markova Valentina1ORCID,Ganchev Todor2ORCID,Filkova Silvia3,Markov Miroslav4ORCID

Affiliation:

1. Department of Communication Engineering and Technologies, Technical University of Varna, 9010 Varna, Bulgaria

2. Department of Computer Science and Engineering, Technical University of Varna, 9010 Varna, Bulgaria

3. Medical College, Medical University of Varna, 9002 Varna, Bulgaria

4. Department of Software and Internet Technologies, Technical University of Varna, 9010 Varna, Bulgaria

Abstract

Improper sitting positions are known as the primary reason for back pain and the emergence of musculoskeletal disorders (MSDs) among individuals who spend prolonged time working with computer screens, keyboards, and mice. At the same time, it is well understood that automated technological tools can play an important role in the process of unhealthy habit alteration, so plenty of research efforts are focused on research and technology development (RTD) activities that aim to provide support for the prevention of back pain or the development of MSDs. Here, we report on creating a new resource in support of RTD activities aiming at the automated detection of improper sitting positions. It consists of multimodal multisensory recordings of 100 persons, made with a video recorder, camera, and wrist-attached sensors that capture physiological signals (PPG, EDA, skin temperature), as well as motion sensors (three-axis accelerometer). Our multimodal multisensory dataset (MMD-MSD) opens new opportunities for modeling the body stance (sitting posture and movements), physiological state (stress level, attention, emotional arousal and valence), and performance (success rate on the Stroop test) of people working with a computer. Finally, we demonstrate two use cases: improper neck posture detection from pictures, and task-specific cognitive load detection from physiological signals.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3