Study on Residence Time Distribution of Particles in a Quasi-Two-Dimensional Batch Discharge Silo Using the Multi-Simulation Averaging Method

Author:

Zhu Jingzhen12ORCID,Xu Wentao12,Zheng Rongyao12ORCID,Wang Can12ORCID,Li Xiwen12ORCID

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

As the primary carrier for storing and transporting particles, the silo is widely used in the production process. The RTD is a promising method for studying the silo discharge process and has not been studied enough. This paper presents a study on the residence time distribution (RTD) and flow pattern of particles in a two-dimensional flat-bottom batch discharge silo under gravity using experiments and the discrete element method (DEM). Meanwhile, a multi-simulation averaging method is proposed to eliminate local fluctuations in the residence time. The results are as follows. The mean flow rate is 16.85 g·s−1 in simulations, which is only 2.7% larger than the experimental value. In the central area of the silo, the residence time contour lines take on elliptical shapes and the trajectories of particles are straight lines. The particles are distributed along the elliptical residence time contour lines all the time during the discharge process until they flow out of the silo. The particles near the side wall of the silo swiftly flow with a constant acceleration to the central line of the silo along the upper horizontal surface, which has become avalanche slopes, and then flow down the outlet together with the particles in the radial flow region. In this study, an elliptical distribution law during the silo discharge process was funded for the first time. An improved radial flow model was proposed with a higher accuracy and clearer physical meaning, which will be helpful in silo design and scaling up in industrial applications.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3