Classification of Quality Characteristics of Surimi Gels from Different Species Using Images and Convolutional Neural Network

Author:

Yoon Won Byong12ORCID,Oyinloye Timilehin Martins12ORCID,Kim Jinho3

Affiliation:

1. Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea

2. Elder-Friendly Research Center, Agriculture and Life Science Research Institute, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea

3. Swiss School of Management—Seoul, #202 Wellbeing Center, Worldcup-ro 37, Mapo-gu, Seoul 04056, Republic of Korea

Abstract

In the aspect of food quality measurement, the application of image analysis has emerged as a powerful and versatile tool, enabling a highly accurate and efficient automated recognition and the quality classification of visual data. This study examines the feasibility of employing an AI algorithm on labeled images as a non-destructive method to classify surimi gels. Gels were made with different moisture (76–82%) and corn starch (5–16%) levels from Alaska pollock and Threadfin breams. In surimi gelation, interactions among surimi, starch, and moisture caused color and quality shifts. Color changes are indicative of structural and quality variations in surimi. Traditional color measuring techniques using colorimeter showed insignificant differences (p < 0.05) in color values and whiteness among treatments. This complexity hindered effective grading, especially in intricate formulations. Despite insignificant color differences, they signify structural changes. The Convolutional Neural Network (CNN) predicts the visual impact of moisture and starch on gel attributes prepared with different surimi species. Automated machine learning assesses AI algorithms; and CNN’s 70:30 training/validation ratio involves 400–700 images per category. CNN’s architecture, including input, convolutional, normalization, Rectified Linear Unit (ReLU) activation, and max-pooling layers, detects subtle structural changes in treated images. Model test accuracies exceed 95%, validating CNN’s precision in species and moisture classification. It excels in starch concentrations, yielding > 90% accuracy. Average precision (>0.9395), recall (>0.8738), and F1-score (>0.8731) highlight CNN’s high performance. This study demonstrates CNN’s value in non-destructively classifying surimi gels with varying moisture and starch contents across species, and it provides a solid foundation for advancing our understanding of surimi production processes and their optimization in the pursuit of high-quality surimi products.

Funder

Kangwon National University

Ministry of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3