Impact of Deep Eutectic Solvents on Kinetics and Folding Stability of Formate Dehydrogenase

Author:

Gajardo-Parra Nicolás F.1ORCID,Rodríguez Gabriel1,Arroyo-Avirama Andrés F.2ORCID,Veliju Astrit3,Happe Thomas3ORCID,Canales Roberto I.2ORCID,Sadowski Gabriele1ORCID,Held Christoph1ORCID

Affiliation:

1. Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany

2. Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile

3. Lehrstuhl für Biochemie der Pflanzen, Ruhr Universität Bochum, AG Photobiotechnologie, ND2/170, 44780 Bochum, Germany

Abstract

Specifically designed co-solvent mixtures are an efficient way to enhance the kinetics of enzyme-catalyzed reactions without compromising enzyme stability; among them, several deep eutectic solvents have emerged as exciting co-solvent mixtures for biocatalytic reactions. DESs nature allows one to tailor the enzyme-co-solvent interactions by using DESs constituents of diverse functional groups. In this work, the influence of co-solvents (betaine, glycerol, and sorbitol) and two DESs (betaine:glycerol and betaine:sorbitol) on the kinetics of candida boidinii Formate dehydrogenase was evaluated. The results showed a 30% increase in catalytic efficiency by adding 15 wt.-% of betaine to the buffered aqueous reaction media. Further, cbFDH folded-state stability was evaluated using differential scanning fluorimetry to finally obtain the binding affinity, unfolding curves, and thermodynamic unfolding parameters. The addition of glycerol, sorbitol, and DESs increased cbFDH protection against thermal stress, and this effect could be improved by increasing co-solvent concentrations. Moreover, DESs showed the ability to reduce the irreversibility of the unfolding process. Betaine was the only co-solvent that had a negative stability effect, which was offset by using betaine-based DESs. The latter was a result of the additivity of certain individual co-solvent effects on thermal stability. Non-monotonous stability effects were obtained by adding sorbitol to the buffer solutions, probably because hydrogen bond dynamics between cbFDH/co-solvent/water change dramatically with the amount of water present. Finally, DESs improved NAD+ binding affinity with cbFDH interestingly without direct correlation with the results obtained for kinetics.

Funder

Deutsche Forschungsgemeinschaft

German Academic Exchange Service

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3