An Experimental Investigation of the Effects of Dressing and Grinding Parameters on Sustainable Grinding of Inconel 738 Used for Automated Manufacturing

Author:

Hadad Mohammadjafar12,Attarsharghi Samareh3ORCID,Makarian Javad2,Mahdianikhotbesara Ali2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering and Technology, University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar

2. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-4563, Iran

3. Department of Electrical Engineering, College of Engineering and Technology, University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar

Abstract

The significant effect of the dressing process on the surface of the grinding wheel (GW) and the need to provide an optimal dressing condition are the requirements of reduction machining time and energy consumption in the sustainable grinding process. In this study, for the first time, the results of changes in the parameters of the dressing process and changes in the topography of the grinding surface on the surface roughness of the Inconel 738 have been presented using single-edge and four-edge diamond dressers. The use of minimum quantity lubrication (MQL) and wet condition are other variables in this study to reduce the consumption of cutting fluid and prevent its destructive effects on the environment. The results indicate that the MQL technique increases the grinding performance of Inconel 738 by reducing ground workpiece surface roughness and decreasing the coolant–lubricant consumption comparing to the conventional wet grinding process. Additionally, it has been found from the experimental results that applying a single-edge dresser generates finer topography on the grinding wheel and, consequently, has a better surface finish in the grinding process compared to the multipoint diamond dressing tool with the same dressing and grinding parameters. In other words, increasing the dressing feed rate during dressing of the grinding wheel using a multipoint dresser makes a finer wheel surface topography and as a result decreases the surface roughness of the ground workpiece compared to a single-edge dresser. With multipoint diamond tools, the grinding performance during the life of the dressing tool also tends to remain more consistent, which is a definite advantage in automated production. Therefore, application of a multipoint dresser leads to a reduction in dressing time and increased production capability.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3