Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups

Author:

Campanella Cosimo,De Michele Vincenzo,Morana AdrianaORCID,Mélin Gilles,Robin Thierry,Marin Emmanuel,Ouerdane YoucefORCID,Boukenter AzizORCID,Girard Sylvain

Abstract

Signal transmission over optical fibers in the ultraviolet to near-infrared domains remains very challenging due to their high intrinsic losses. In radiation-rich environments, this is made even more difficult due to the radiation-induced attenuation (RIA) phenomenon. We investigated here how the number of hydroxyl groups (OH) present in multi-mode (MM) pure-silica core (PSC) optical fibers influences the RIA levels and kinetics. For this, we tested three different fiber samples: one “wet”, one “dry” and one with an intermediate “medium” OH content. The RIA of the three samples was measured in the 400–900 nm (~3 eV to ~1.4 eV) spectral range during and after an X-ray irradiation at a dose rate of 6 Gy(SiO2) s−1 up to a total accumulated dose of 300 kGy(SiO2). Furthermore, we evaluated the H2-pre-loading efficiency in the medium OH sample to permanently improve both its intrinsic losses and radiation response in the visible domain. Finally, the spectral decomposition of the various RIA responses allows us to better understand the basic mechanisms related to the point defects causing the excess of optical losses. Particularly, it reveals the relationship between the initial OH groups content and the generation of non-bridging oxygen hole centers (NBOHCs). Moreover, the presence of hydroxyl groups also affects the contribution from other intrinsic defects such as the self-trapped holes (STHs) to the RIA in this spectral domain.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3