Abstract
Addition is the most basic operation of computing based on a bit system. There are various addition algorithms considering multiple number systems and hardware, and studies for a more efficient addition are still ongoing. Quantum computing based on qubits as the information unit asks for the design of a new addition because it is, physically, wholly different from the existing frequency-based computing in which the minimum information unit is a bit. In this paper, we propose an efficient quantum circuit of modular addition, which reduces the number of gates and the depth. The proposed modular addition is for the Galois Field GF(2n−1), which is important as a finite field basis in various domains, such as cryptography. Its design principle was from the ripple carry addition (RCA) algorithm, which is the most widely used in existing computers. However, unlike conventional RCA, the storage of the final carry is not needed due to modifying existing diminished-1 modulo 2n−1 adders. Our proposed adder can produce modulo sum within the range 0,2n−2 by fewer qubits and less depth. For comparison, we analyzed the proposed quantum addition circuit over GF(2n−1) and the previous quantum modular addition circuit for the performance of the number of qubits, the number of gates, and the depth, and simulated it with IBM’s simulator ProjectQ.
Funder
Institute for Information & Communications Technology Planning 237 & Evaluation
Hanyang University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference37 articles.
1. Benchmarking gate-based quantum computers
2. Quantum supremacy using a programmable superconducting processor
3. IBM Quantum Experience
https://quantum-computing.ibm.com
4. Azure Quantum
https://azure.microsoft.com/en-us/services/quantum
5. Rigetti: Think Quantum
https://rigetti.com
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献