Behavioral Modeling of Memristor-Based Rectifier Bridge

Author:

Solovyeva ElenaORCID,Schulze Steffen,Harchuk Hanna

Abstract

In electrical engineering, radio engineering, robotics, computing, control systems, etc., a lot of nonlinear devices are synthesized on the basis of a nanoelement named memristor that possesses a number of useful properties, such as passivity, nonlinearity, high variability of parameters, nonvolatility, compactness. The efficiency of this electric element has led to the emergence of many memristor technologies based on different physical principles and, as a result, to the occurrence of different mathematical models describing these principles. A general approach to the modeling of memristive devices is represented. The essence is to construct a behavioral model that approximates nonlinear mapping of the input signal set into the output signal set. The polynomials of split signals, which are adaptive to the class of input signals, are used. This adaptation leads to the model’s simplification important in practice. Multi-dimensional polynomials of split signals are built for the rectifier bridge at harmonic input signals. The modeling error is estimated in the mean-square norm. It is shown that the accuracy of the modeling is increased in the case of using the piecewise polynomial with split signals.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference62 articles.

1. Nonlinear Circuits and Systems with Memristors: Nonlinear Dynamics and Analogue Computing via the Flux-Charge Analysis Method;Corinto,2021

2. Advanced Memristor Modeling: Memristor Circuits and Networks;Mladenov,2019

3. Memristive Nonlinear Electronic Circuits: Dynamics, Synchronization and Applications;Rahma,2019

4. Advances in Memristors, Memristive Devices and Systems;Vaidyanathan,2017

5. Memristor-The missing circuit element

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3