An Improved Hilbert–Huang Transform for Vibration-Based Damage Detection of Utility Timber Poles

Author:

Das IpshitaORCID,Arif Mohammad TaufiqulORCID,Oo Aman Maung Than,Subhani MahbubeORCID

Abstract

In this study, vibration based non-destructive testing (NDT) technique is adopted for assessing the condition of in-service timber pole. Timber is a natural material, and hence the captured broadband signal (induced from impact using modal hammer) is greatly affected by the uncertainty on wood properties, structure, and environment. Therefore, advanced signal processing technique is essential in order to extract features associated with the health condition of timber poles. In this study, Hilbert–Huang Transform (HHT) and Wavelet Packet Transform (WPT) are implemented to conduct time-frequency analysis on the acquired signal related to three in-service poles and three unserviceable poles. Firstly, mother wavelet is selected for WPT using maximum energy to Shannon entropy ratio. Then, the raw signal is divided into different frequency bands using WPT, followed by reconstructing the signal using wavelet coefficients in the dominant frequency bands. The reconstructed signal is then further decomposed into mono-component signals by Empirical Mode Decomposition (EMD), known as Intrinsic Mode Function (IMF). Dominant IMFs are selected using correlation coefficient method and instantaneous frequencies of those dominant IMFs are generated using HHT. Finally, the anomalies in the instantaneous frequency plots are efficiently utilised to determine vital features related to pole condition. The results of the study showed that HHT with WPT as pre-processor has a great potential for the condition assessment of utility timber poles.

Funder

AusNet Services, Australia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. State-of-the-Practice & Challenges in Non-Destructive Evaluation of Utility Poles in Service

2. Nondestructive testing techniques and piezoelectric ultrasonics transducers for wood and built in wooden structures;Tanasoiu;J. Optoelectron. Adv. Mater.,2002

3. Wave propagation in structures;Doyle,1989

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3