Affiliation:
1. Dipartimento di Elettronica, Informatica, Bioingegneria (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Abstract
Positioning a Synthetic Aperture Radar (SAR) receiver at a significant distance from an illuminator in a Low Earth Orbit (LEO) enables wide-angle repeat-pass bistatic interferometry. It’s crucial to define the positioning limits of the receiver with respect to the illuminator to ensure reasonable coherences, altitudes of ambiguity, and a suitable common wavenumber support. I extended the standard monostatic formula, which yields the change in the interferometric travel path due to the vertical baseline. In the wide-angle bistatic case, the range-azimuth coordinate system is no longer orthogonal and we must consider the full 2D vector nature of the LOS orthogonal components. The two vertical baselines and the horizontal baseline of the receiver are needed to parameterize the system. Their impact on the interferometric coherence is quantified and bistatic limits are seen to be more flexible than those in the monostatic case due to the combination of independent baselines. I estimated the coherence, and then extended the analysis to the wavenumber domain, to quantify the common spectral support due to the wavenumber shifts due to the three baselines. The analysis carried out geometrically allows for combining together the effects of the transmitter’s and receiver’s vertical baselines and thus representing the residual spectral fraction with two instead of three parameters. Finally, I examined the achievable spatial resolution of the position of the interferer obtainable from the delay of the arrival of the interference between the illuminator (supposed to be silent) and the receiver.