Comparing ML Methods for Downscaling Near-Surface Air Temperature over the Eastern Mediterranean

Author:

Blizer Amit1,Glickman Oren2ORCID,Lensky Itamar M.1ORCID

Affiliation:

1. Department of Geography and Environment, Bar-Ilan University, Ramat Gan 5290002, Israel

2. Department of Computer Science, Bar-Ilan University, Ramat Gan 5290002, Israel

Abstract

Near-surface air temperature (Ta) is a key variable in global climate studies. Global climate models such as ERA5 and CMIP6 predict various parameters at coarse spatial resolution (>9 km). As a result, local phenomena such as the urban heat islands are not reflected in the model’s outputs. In this study, we address this limitation by downscaling the resolution of ERA5 (9 km) and CMIP6 (27 km) Ta to 1 km, employing two different machine learning algorithms (XGBoost and Deep Learning). Our models leverage a diverse set of features, including data from satellites (land surface temperature and normalized difference vegetation index), from ERA5 and CMIP6 climate models (e.g., solar and thermal radiation, wind), and from digital elevation models to develop accurate machine learning prediction models. These models were rigorously validated against observations from 98 meteorological stations in the East Mediterranean (Israel) using a standard cross-validation technique as well as a leave-one-group-out on the station ID evaluation methodology to avoid overfitting and dependence on geographic location. We demonstrate the sensitivity of the downscaled Ta to local land cover and topography, which is missing in the climate models. Our results demonstrate impressive accuracy with the Deep Learning-based models, obtaining Root Mean Squared Error (RMSE) values of 0.98 °C (ERA5) and 1.86 °C (CMIP6) for daily Ta and 2.20 °C (ERA5) for hourly Ta. Additionally, we explore the impact of the various input features and offer an extended application for future climate predictions. Finally, we propose an enhanced evaluation framework, which addresses the problem of model overfitting. This work provides practical tools and insights for building and evaluating Ta downscaling models. The code and data are publicly shared online.

Funder

Chief Scientist of the Israeli Ministry of Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3