Spatial Downscaling of ESA CCI Soil Moisture Data Based on Deep Learning with an Attention Mechanism

Author:

Zhang Danwen1ORCID,Lu Linjun1,Li Xuan1,Zhang Jiahua12ORCID,Zhang Sha1,Yang Shanshan1

Affiliation:

1. Remote Sensing Information Center, College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Soil moisture (SM) is a critical variable affecting ecosystem carbon and water cycles and their feedback to climate change. In this study, we proposed a convolutional neural network (CNN) model embedded with a residual block and attention module, named SMNet, to spatially downscale the European Space Agency (ESA) Climate Change Initiative (CCI) SM product. In the SMNet model, a lightweight Convolutional Block Attention Module (CBAM) dual-attention mechanism was integrated to comprehensively extract the spatial and channel information from the high-resolution input remote sensing products, the reanalysis meteorological dataset, and the topographic data. The model was employed to downscale the ESA CCI SM from its original spatial resolution of 25 km to 1 km in California, USA, in the annual growing season (1 May to 30 September) from 2003 to 2021. The original ESA CCI SM data and in situ SM measurements (0–5 cm depth) from the International Soil Moisture Network were used to validate the model’s performance. The results show that compared with the original ESA CCI SM data, the downscaled SM data have comparable accuracy with a mean correlation (R) and root mean square error (RMSE) of 0.82 and 0.052 m3/m3, respectively. Moreover, the model generates reasonable spatiotemporal SM patterns with higher accuracy in the western region and relatively lower accuracy in the eastern Nevada mountainous area. In situ site validation results in the SCAN, the SNOTEL network, and the USCRN reveal that the R and RMSE are 0.62, 0.63, and 0.77, and 0.077 m3/m3, 0.093 m3/m3, and 0.078 m3/m3, respectively. The results are slightly lower than the validation results from the original ESA CCI SM data. Overall, the validation results suggest that the SMNet downscaling model proposed in this study has satisfactory performance in handling the task of soil moisture downscaling. The downscaled SM model not only preserves a high level of spatial consistency with the original ESA CCI SM model but also offers more intricate spatial variations in SM depending on the spatial resolution of model input data.

Funder

Shandong Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3