Module to Support Real-Time Microscopic Imaging of Living Organisms on Ground-Based Microgravity Analogs

Author:

Neelam Srujana,Lee AudreyORCID,Lane Michael A.ORCID,Udave Ceasar,Levine Howard G.,Zhang Ye

Abstract

Since opportunities for spaceflight experiments are scarce, ground-based microgravity simulation devices (MSDs) offer accessible and economical alternatives for gravitational biology studies. Among the MSDs, the random positioning machine (RPM) provides simulated microgravity conditions on the ground by randomizing rotating biological samples in two axes to distribute the Earth’s gravity vector in all directions over time. Real-time microscopy and image acquisition during microgravity simulation are of particular interest to enable the study of how basic cell functions, such as division, migration, and proliferation, progress under altered gravity conditions. However, these capabilities have been difficult to implement due to the constantly moving frames of the RPM as well as mechanical noise. Therefore, we developed an image acquisition module that can be mounted on an RPM to capture live images over time while the specimen is in the simulated microgravity (SMG) environment. This module integrates a digital microscope with a magnification range of 20× to 700×, a high-speed data transmission adaptor for the wireless streaming of time-lapse images, and a backlight illuminator to view the sample under brightfield and darkfield modes. With this module, we successfully demonstrated the real-time imaging of human cells cultured on an RPM in brightfield, lasting up to 80 h, and also visualized them in green fluorescent channel. This module was successful in monitoring cell morphology and in quantifying the rate of cell division, cell migration, and wound healing in SMG. It can be easily modified to study the response of other biological specimens to SMG.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3